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(Category Category code Examples
Fatty acids FA Oleate, stearoyl-CoA, palmitoylcarnitine
Glycerolipids GL Di- and triacylglycerols
Glycerophospholipids GP Phosphatidyicholine, phosphatidylserine,
phosphatidylethanolamine
Sphingolipids SP Sphingomyelin, ganglioside GM2
Sterol lipids ST Cholesterol, progesterone, bile acids
Prenol lipids PR Farnesol, geraniol, retinol, ubiquinone
Saccharolipids SL Lipopolysaccharide
Polyketides PK Tetracycline, aflatoxin B,
Table 10-3
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A gallstone that blocked the upper part of the bile duct
would cause an increase in which of the following?
(A) The formation of chylomicrons

(B) The recycling of bile salts

(C) The excretion of bile salts

(D) Increased conjugation of bile salts

(E) The excretion of fat in the feces
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Which of the following statements concerning the liver
and the adipose cells is correct?

(A) Adipose cells contain glycerol kinase.

(B) Liver cells contain a hormone-sensitive lipase.

(C) Adipose cells have a transport system for glucose
that is not regulated by insulin.

(D) Liver cells secrete lipoproteins when blood insulin
levels are low.

(E) Adipose cells secrete lipoprotein lipase when
blood insulin levels are high.
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Composition of lipoproteins
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Lipoprotein Density (9/mL)  Protein  Phospholipids Free cholesterol Cholesteryl esters Triacylglycerols
Chylomicrons <1.006 2 9 1 3 85
VLDL 0.95-1.006 10 18 7 12 50
LDL 1.006-1.063 23 20 8 37 10
HDL 1.063-1.210 55 24 2 15 4




Which of the following apoproteins is an
activator of lipoprotein lipase?

a)Apo A

b) Apo B

c) Apo C I

d) Apo D

e) Apo E
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A 5-year-old boy presents with altered mental status,
heart failure and muscle weakness. His serum levels
of ketones and glucose are abnormally low. He is
diagnosed with primary carnitine deficiency.

In which of the following is carnitine directly involved?
(A) Activation of fatty acids

(B) Transport of fatty acyl-CoA

(C) B-oxidation

(D) w-oxidation

(E) a-oxidation
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palmitoyl-CoA + 23 O, + 108 Pi + 108 ADP - CoA + 108 ATP + 16 CO, + 23 H,0

Number of NADH or Number of ATP
Enzyme catalyzing the oxidation step FADH, formed ultimately formed*
Acyl-CoA dehydrogenase 7 FADH, 10.5
B-Hydroxyacyl-CoA dehydrogenase 7 NADH 17.5
Isocitrate dehydrogenase 8 NADH 20
a-Ketoglutarate dehydrogenase 8 NADH 20
Succinyl-CoA synthetase 8t
Succinate dehydrogenase 8 FADH, 12
Malate dehydrogenase 8 NADH 20
Total 108

*These calculations assume that mitochondrial oxidative phosphorylation produces 1.5 ATP per FADH, oxidized and 2.5
ATP per NADH oxidized.

TGTP produced directly in this step yields ATP in the reaction catalyzed by nucleoside diphosphate kinase (p.510).

The energetic cost of activating a fatty acid is equivalent to 2 ATP, and the net gain
per molecule of palmitate is 106 ATP.
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Source of cytosolic NADPH

C|00’ NADP? NADPH + H* CIZOO‘
ClHOH \_/ C=0

: , > | + CO,

CH, malic enzyme CH;

|

CO0O™
Malate Pyruvate

NADP* NADP*
NADPH NADPH

Glucose Ribulose

> > >
6-phosphate pentose phosphate pathway 5-phosphate

Cytosolic coenzyme NADPH/NADP* ~75

levels in hepatocytes: NADH/NAD"* ~8x10



A 30- year-old pregnant woman has a sugar craving
and consumes a hot fudge sundae. Her serum
glucose level increases, which causes release of
Insulin. Insulin is known to increase the activity of
acetyl-CoA carboxylase, the rate limiting enzyme of
fatty acid biosynthesis. Which of the following best
describes this regulatory enzyme?

a) It is activated by carboxylation

b) It catalyzes a reaction that condenses an acetyl
group with malonyl group

c) It catalyzes a reaction that requires biotin and ATP
d) It converts Malonyl-CoA to Acetyl-CoA

e) It is activated by Malonyl-CoA.



FATTY ACID DEGRADATION FATTY ACID SYNTHESIS
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Mechanism of fatty acid synthesis
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Overall reactions for palmitate synthesis

7 malonyl-CoA + 1 acetyl-CoA + 14 NADPH + 14 H* =
palmitate + 7 CO, + 14 NADP* +6 H,O + 8 CoOASH

8 acetyl-CoA +7 ATP + 14 NADPH + 14 H* =
palmitate + 7 ADP + 7 P, + 14 NADP* +6 H,0 + 8 CoASH

Notes

*Since fatty acids are elongated with C2 units, most fatty acids

are even chain
‘Fatty acid synthase of the cytosol produces max 16 C long

saturated fatty acids.

‘Longer and/or unsaturated fatty acids are produced by enzyme
systems of ER and mitochondria.

-Odd chain fatty acids are produced when AT enzyme accepts
propionyl-CoA as a substrate by mistake.



Newly synthesized fatty acids are not immediately
degraded because of which of the following reasons?

(A) Fatty acid synthesis occurs in tissues that do not
contain the enzymes that degrade fatty acids.

(B) High NAD* levels inhibit fatty acid breakdown.

(C) Transport of fatty acids into mitochondia is
Inhibited under fatty acid synthesis.

(D) Fatty acid synthesis occurs in the mitochondria,
while fatty acid 3-oxidation occurs in the cytosol.

(E) Newly synthesized fatty acids cannot be
converted to their coenzyme A (CoA) derivatives.
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A 40-year-old woman has rheumatoid arthritis, a
crippling disease causing severe pain and
deformation in the joints of the fingers. She is
prescribed prednisone, a steroidal anti-inflammatory
drug. What is the mechanism of steroidal anti-
Inflammatory agents?

a) Prevent conversion of arachidonic acid to epoxides
b) Inhibit phospholipase A,

c) Promote activation of prostacyclins

d) Degrade thromboxanes

e) Promote leukotriene formation from HPETES
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What is the mechanism of non-steroid anti-
iInflammatory agents (NSAIDs)?

a) Promote leukotriene formation from HPETES
b) Inhibit phospholipase A2

c) Promote activation of prostacyclins

d) Degrade thromboxanes

e) Inhibit cyclooxigenase (COX) enzyme
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The key regulatory enzyme of cholesterol synthesis is:

a) HMG- Co A synthase
b) HMG Co A lyase
c) HMG Co Areductase

d) Mevalonate kinase
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Synthesis of activated isoprenes
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Synthesis of squalene
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Synthesis of cholesterol
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Figure 21-38
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A 40-year-old man presents with chest pain that
radiates to his left jaw and shoulder. He is diagnosed
with a myocardial infarct (heart attack) and is
prescribed a statin medication. Statins are competitive
Inhibitors of HMG-CoA reductase, which converts
HMG-CoA to which of the following?

a) Mevalonate

b) Isopentenyl pyrophosphate

c) Geranyl pyrophosphate

d) Farnesyl pyrophosphate

e) Cholesterol



HO

HO - -
COoO H.C CoO
OH OH
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(0

CH;

R,=H Compactin

R,=CH; Simvastatin (Zocor)

R, = OH Pravastatin (Pravachol)
R,=CH; Lovastatin (Mevacor)



Regulation of cholesterol synthesis
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How does inhibition of HMG-CoA reductase cause
lowering of cholesterol and LDL levels?

a) It increases serum level of HDL

b) It decreases serum level of LDL by promoting
catabolism

c) It inhibits the formation of LDL from IDL

d) It inhibits the rate limiting step in cholesterol
biosynthesis

e) It inhibits synthesis of LDL receptors.



Which of the following compounds directly
Inhibits the expression of the HMG-CoA
reductase gene”?

a) Squalene

b) HMG-CoA

c) Lanosterol

d) Isopentenyl pyrophosphate

e) Cholesterol



Transcriptional regulation of cholesterol synthesis

Secretion
“escorts”

Insig 2_Oxysterol

Ubiquitin targets
Insig Insig for

degradation. O Regulatory
domain
. enters
Secretory proteins nucleus.

@ escort SCAP/
= SREBP to Golgi.

-

SCAP

SREBP

Lumen Cytosol
ER membrane

(a) High [sterol]in ER
SCAP/SREBP retained
in ER, bound to Insig

SCAP <
£ 6 Transcription
Reaulst In Golgi, two proteases release synthesizing
cguiakony regulatory domain of SREBP. enzymes
domain stimulated.
Nucleus
(b) Low [sterol] in ER (c) Increased cholesterol
Regulatory domain of SREBP synthesis in ER

released by proteolysis



Familial hypercholesterolemia

Autosomal dominant disorder, incidence of
heterozygous form 1:500, incidence of
homozygous form 1:1.000.000

Elevated blood cholesterol and LDL levels (VLDL,
Triglycerid levels usually within the normal range)
Pathophysiology: Missing/nonfunctional LDL-
receptors or mutation in ApoB100

Instead of liver cells macrophages take up
cholesterol - foam cells

Symptoms:

* Obesity

* Atherosclerosis

* Early onset of cardiovascular diseases

* Early onset atherosclerosis in the family history
* Xanthoma, xanthelasma palpebrum

* Brown pigmentation on the face

* Early death (2nd-3rd decade to 50s with -
therapy) Xanthelasma
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Regulation of ketone body synthesis
via HMG-CoA synthase

Acetoacetyl-CoA

Acetyl-CoA

HMG-CoA synthase Acetyl-CoA

Succinyl-CoA HMG-CoA
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The triacylglycerol cycle

Adipose tissue Blood Liver
Lipoprotein
lipase
Glycerol Glycerol
Triacylglycerol I;act;tg' Triacylglycerol
/ Fatty
acid
Glycerol Fuel for Glycerol
3-phosphate tissues 3-phosphate

Figure 21-20
Lehninger Principles of Biochemistry, Fifth Edition
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Production of glycerol-phosphate for
lipid synthesis

Glucose
.
glycolyswl
(l:HzOH (I:HZOH
C|=0 (I? (IZHOH
CH>—O0—P—0"  CH,0H
Dihydroxyacetone - Glycerol
phosphate
NADH + H* ATP
glycerol 3-phosphat\ glycerol NOT PRESENT IN
dehydrogenase kinase ADIPOSE TISSUE
o /\_, CH20H ADP

HO—C | —H (")
CHz—O—II’— o~

0-
L -Glycerol 3-phosphate



Glyceroneogenesis

Pyruvate
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Figure 21-21
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Regulation of the glyceroneogenesis
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Production of
triacylglycerols
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" Production of
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Strategy 1
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Glycerophospholipid ‘].|)

(general structure)
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Mobilization of triacylglycerols
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FIGURE 17-3 Mobilization of triacylglycerols stored in adipose tissue.
When low levels of glucose in the blood trigger the releass of glucagon,
© the hormane binds its receptor in the adipocyte membrane and thus
@ stimulates adenylyl cyclase, via a G protein, to produce cAMP. This acti-
vates PKA, which phosphorylates @ the hormone-sensitive lipase (HSL)
and @ perilipin molecules on the surface of the lipid droplet. Phospharyla-
tion of perifipin causes €@ dissociation of the protein CGI from penlipin. CGI
then associates with the enzyme adipose triacyiglycerol lipase {(ATGL), acti-
vating it. Active ATGL @ converts triacylgiycerols to diacyiglycerols. The

Bloodstream

phosphorylated perilipin associates with phosphorylated HSL allowing it
access to the surface of the lipid droplet, where @ it converts diacylglycerols
to monoacyiglycerols. A third lipase, monoacylglycerol fipase (MGL) @,
hydrotyzes monoacylglycerols. @ Fatty acids leave the adipocyte, bind
serum albumin in the bload, and are carried in the blood; they are released
from the albumin and @ enter a3 myocyte via a specific fatty acid transporter.
@ in the myocyte, fatty acids are oxidized to CO;, and the energy of
oxidation is conserved in ATP, which fuels muscle contraction and other
energy-requiring metabolism in the myocyte.



Entry of glycerol into glycolysis
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A 4-month-old infant presents with a seizure. His
mother reports that her infant has been irritable and
lethargic over the past several days. The infant is
found to have a profoundly low serum glucose level
(hypoglycemia) and a profoundly low ketone body
level. The infant is diagnosed with medium-chain acyl
CoA dehydrogenase (MCAD) deficiency.

What is the etiology of this patient’s symptoms?

(A) B -oxidation of fatty acids is blocked

(B) He Is consuming a diet that is too low in protein.
(C) Triacylglycerols are being stored in adipose
tissue.

(D) Glucose is being used up for fatty acid synthesis.
(E) Fatty acyl CoA cannot be transported into
mitochondria.






