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Question

What phase of cellular respiration has the
highest ATP yield?

a) Oxidative phosphorylation
b) Gluconeogenesis

c) Krebs cycle

d) Glycolysis

e) Fermentation



Question

Given a healthy individual with a normal
metabolic rate, which of the following
compounds is the most energy rich?

A. GTP
B. ATP
C. FADH,
D. NADH
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Question

In substrate level phosphorylation...

A.

ATP synthesis is linked to dissipation of proton gradient.
High energy intermediate compounds cannot be isolated.

Oxidation of one molecule of substrate is linked to synthesis of
more than one ATP molecule.

Only mitochondrial reactions participate in ATP formation.

The cleavage of the high-energy bond in the substrate provides
the energy required for ATP synthesis.



Question

The energy of oxidation is initially trapped as a high-energy
phosphate compound and then used to form ATP. Which of the
following intermediates of glycolysis is a high energy compound?

A. Fructose-6-P

B. Glyceraldehyde-3-P

C. Fructose-1,6 bisphosphate
D. Glucose-6-P

E. Phosphoenol pyruvate
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Question

Which one of the following enzymes catalyzes substrate level
phosphorylation in TCA cycle?

A. Malate dehydrogenase

B. Succinyl-CoA synthetase

C. oa-ketoglutarate dehydrogenase complex
D. Isocitrate dehydrogenase

E. Succinate dehydrogenase



8

Dehydrogenation:
oxidation of —OH

o Claisen condensation:

Acetyl-CoA methyl group of
P acetyl-CoA converted to
II methylene in citrate.
CH 3—C —S-CoA

H0  coa-sH

D

1 idati Chieate Dehydration/rehydration
completesoxidation g alnacetate . = = :
sequence; generates citrate synthase CH,—CO00 —OH group of citrate
::;:::;i):lal::gl'a';’s::‘d 0=C—C00 ~ HO—C—CO00~ repositioned in isocitrate
condensation in next CH ,—C00 ~ CH,—C00" !:o set up decarboxylation
step. in next step.
malate Citric acid cycle e Naso H,0
o Malate dehydrogenase
Hyd dd CIOO d
ydration: addition CH . —CO0 >
of water across °_c|H e _
double bond CH, | cis-Aconitate
introduces —OH €00 - C C00 ~
group for next
oxidation step.
fumarase (3) NADH
aconitase
H,O0 n (Rehydratuon)
C|°° cu (oo
Fumarate ﬁH H— C Ccoo -
Isocitrate
| HO _Cl_H
= FADH
G coo 2 isocitrate oo ~ e
. succinate dehydrogenase Oxidative decarboxylation:
Dehydrogenation: dehydrogenase —OH group oxidized to
::::::T:;t;:: of e I carbonyl, which in turn
- a-ketoglutarate = = CO, facilitates decarboxylati
initiates methylene H — €00 succinyl-CoA 7m0 B ke

oxidation sequence. CH,

Succinate COO ~

(5]

Substrate-level
phosphorylation: energy of
thioester conserved in
phosphoanhydride bond of
GTP or ATP.

CoA-SH

Figure 16-7
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

synthetase
C|H2—COO =

dehydrogenase by stabilizing carbanion

complex formed on adjacent carbon.

e

c=0
| a-Ketoglutarate
CoA-sH COO ™

(4]

Oxidative decarboxylation:
pyruvate-dehydrogenase-like
mechanism; dependent on
carbonyl on adjacent carbon.

CH,

C—S-CoA
GDP

(ADP) Su:cmyl -CoA

GTP
(ATP)

co,



Question

During aerobic respiration, which of the following pathways correctly orders
the process of cellular metabolism after glycolysis in eukaryotic cells?

A. Citric acid cycle - Pyruvate decarboxylation - Oxidative phosphorylation
B. Pyruvate decarboxylation - Oxidative phosphorylation — Citric acid cycle
C. Citric acid cycle - Oxidative phosphorylation - Pyruvate decarboxylation

D. Pyruvate decarboxylation = Citric acid cycle - Oxidative phosphorylation
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Question

All of the following except one are NAD* requiring enzymes:
A. Acyl-CoA dehydrogenase

B. Glyceraldehyde-3-P dehydrogenase

C. Pyruvate dehydrogenase complex

D. Malate dehydrogenase

E. Lactate dehydrogenase
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The e transport is an exergonic process (AG<0), it covers the energy requirement of
the p* transport which is an endergonic process (AG>0 ).



Question

The primary purpose of the electron transport
chain of mitochondria is

a) to directly phosphorylate ADP

b) to synthesize ATP synthase

c) to directly phosphorylate AMP

d) to carry ADP into the mitochondrial matrix

e) the generation of energy to sequester protons in
the intermembrane space



Question

Which of the following areas of the
mitochondria has the lowest pH?

A. The mitochondrial matrix
B. The intermembrane space
C. The cytosol

D. The mitochondrial cristae



Question
Why is oxygen necessary in aerobic cellular respiration?

A. It provides the hydrogen nuclei needed to create a
proton gradient in the intermembrane space.

B. Itis the final electron acceptor in the electron
transport chain.

C. Itis needed for glycolysis, which begins the process of
respiration in cells.

D. Itisimportant in creating oxaloacetate in the Kreb's
cycle.
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Complex Il. Succinate-dehydrogenase
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Complex lll. Ubiquinone-cytochrome c-oxidoreductase
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Complex IV. Cytochrome c-oxidase
4 Cyt-c (red.) + 8H*(n)+ O, —— 4 Cyt-c (ox.) + 4H*(p) + 2 H,0O
Inhibitors: cyanide, CO,’h_y\drogen sulfide, azides
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2cytc (red) + 4Hy + 1O, —> 2cytc (ox) + 2Hg + H;0



Question

Which of the following components of electron
transport chain does not contain iron sulfur center?

A. NADH dehydrogenase complex
B. Ubiquinone-cytochrome c-oxidoreductase
C. Succinate dehydrogenase

D. Cytochrome c-oxidase
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The P/O Ratio:
How many ATP is synthetized from the energy
released by the reduction of an oxygen atom?

- 1 oxygen atom is reduced by 2 electrons
- Both NADH and FADH, provide two electrons
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The P/O Ratio: How many ATP is synthetised
from the energy released by the reduction of an
oxygen atom?

e The P/O ratio was expected to be - ATP / NADH and
ATP / FADH, (outdated!!!).

e Today we have experimentally determined results, which
show ~2.5 ATP / NADH and ~1.5 ATP / FADH,.

Consider: the pumping of protons into the intermembrane space is NOT a stoichiometric process.

ATP synthesis is coupled with the redox reactions of the
respiratory chain (electrontransfer).

In an uncoupled mitochondrium, oxidation of NADH or succinate
(without oxidative phophorylation [ATP synthesis]) leads to heat
production.

e.g.: thermogenin (UCP1) (physiologic uncoupling protein).
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Isolated mitochondria + ADP + Pi + substrate
(succinate) + buffer + inhibitors

Add Add
venturicidin DNP
or Uncoupled
oligomycin |
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ADP + P,

Add
succinate

!

O, consumed
ATP synthesized

Time
e Inintact (coupled) mitochondria the inhibition of ATP synthesis

(Fo-F1) blocks electron transfer.
Inhibitors: Venturicidin, Oligomycin, Aurovertin

* Uncoupling of oxidation and phosphorylation can also be
demonstrated using chemical compounds. Respiration increases,
but no ATP is produced.

Uncoupling with chemicals: 2,4 Dinitrophenol (DNP), FCCP



Summary

Oxidative phosphorylation occurs in the inner membrane of eukaryotic
mitochondrion. Proton pumps of the respiratory chain and the F,F, ATP
synthase work in this process together, they are coupled.

4 complexes of the respiratory chain (many subunits and redox centers)
transfer electrons from reduced coenzymes to the terminal electron
acceptor O,, which will be reduced to water.

In this process, a proton gradient arises between the outer and inner
sides of the membrane. Protons reenter the matrix through the FF;
ATP synthase and drive ATP synthesis.

Proton gradient arose by the oxidation of NADH produces~2,5 mol ATP,
in the case of FADH, ~1,5 mol ATP. This is the P/O-ratio.

Oxidation and phosphorylation can be uncoupled! The uncoupling
protein, thermogenin induces heat production instead of ATP synthesis.
Oxidative phosphorylation is regulated by the ADP level.
Communication between cytosol and mitochondrium is fullfilled by
several transporters located in the inner membrane.
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Entry of glycerol into glycolysis
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Malate —Aspartate-Shuttle
i ’/f-—_\\ / —
Glycolysis: 2+2x2.5 ) 2x2.5=5

PDHC 2x2.5 \
25 Glycerol-3-Phosphat-Shuttle

Citric acid cycle: 2x(3x2.5+1.5+1)

2x1.5=3
it oo o i o
Number of ATP or reduced Number of ATP

Reaction coenzyme directly formed ultimately formed*
Glucose —— glucose 6-phosphate —1ATP -1
Fructose 6-phosphate —— fructose 1,6-bisphosphate —1ATP -1

2 Glyceraldehyde 3-phosphate —— 2 1,3-bisphosphoglycerate 2 NADH 3or5t

2 1,3-Bisphosphoglycerate —— 2 3-phosphoglycerate 2 ATP 2

2 Phosphoenolpyruvate —— 2 pyruvate 2 ATP 2

2 Pyruvate —— 2 acetyl-CoA 2 NADH 5

2 Isocitrate —— 2 a-ketoglutarate 2 NADH 5

2 a-Ketoglutarate —— 2 succinyl-CoA 2 NADH 5

2 Succinyl-CoA —— 2 succinate 2 ATP (or 2 GTP) 2

2 Succinate ——> 2 fumarate 2 FADH, 3

2 Malate —— 2 oxaloacetate 2 NADH 5
Total 30-32

*This is calculated as 2.5 ATP per NADH and 1.5 ATP per FADH,. A negative value indicates consumption.

"This number is either 3 or 5, depending on the mechanism used to shuttle NADH equivalents from the cytosol to the mitochondrial matrix;
see Figures 19-30 and 19-31.

Table 16-1
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W.H. Freeman and Company



palmitoyl-CoA + 23 O, + 108 Pi + 108 ADP - CoA + 108 ATP + 16 CO, + 23 H,0

Number of NADH or Number of ATP
Enzyme catalyzing the oxidation step FADH, formed ultimately formed*
Acyl-CoA dehydrogenase 7 FADH, 10.5
B-Hydroxyacyl-CoA dehydrogenase 7 NADH 17.5
Isocitrate dehydrogenase 8 NADH 20
a-Ketoglutarate dehydrogenase 8 NADH 20
Succinyl-CoA synthetase 8t
Succinate dehydrogenase 8 FADH, 12
Malate dehydrogenase 8 NADH 20
Total 108

*These calculations assume that mitochondrial oxidative phosphorylation produces 1.5 ATP per FADH, oxidized and 2.5
ATP per NADH oxidized.

TGTP produced directly in this step yields ATP in the reaction catalyzed by nucleoside diphosphate kinase (p.510).

The energetic cost of activating a fatty acid is equivalent to 2 ATP, and the net gain
per molecule of palmitate is 106 ATP.






