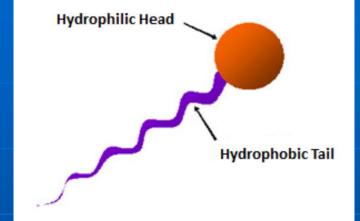

Nanotechnology in drug delivery

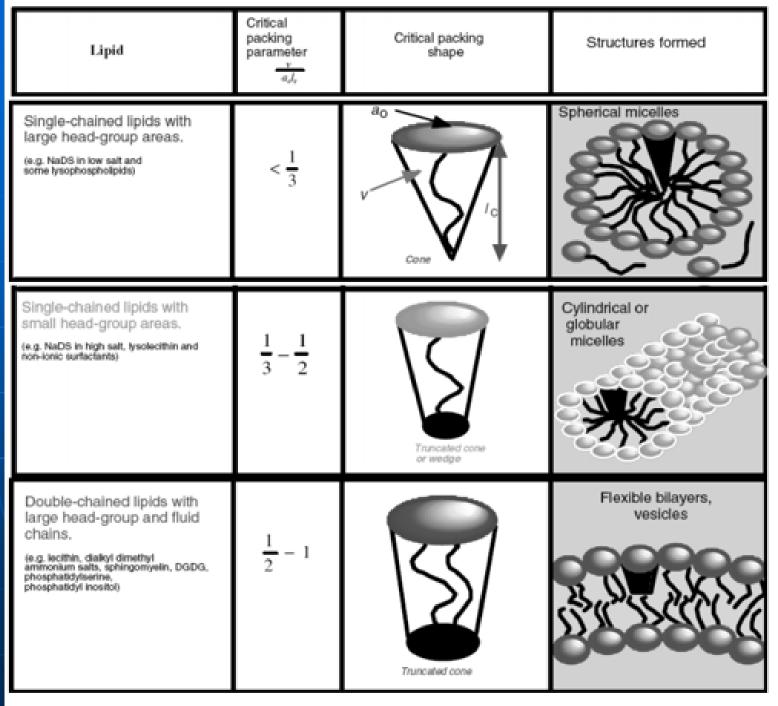
Pécsi Tudományegyetem Gyógyszertechnológiai és Biofarmáciai Intézet Dr. Secenji Aleksandar PTE, Általános és Fizikai Kémia Tanszék


Vesicular drug delivery systems

The vesicular systems are highly ordered assemblies of one or several concentric lipid bilayers formed, when certain amphiphillic building blocks are confronted with water.

Critical Packing Parameter (CPP) (Israelachvili 2011) is defined by the relative sizes of the hydrophobic and hydrophilic regions of the molecule

$$CPP = \frac{v}{a_0 l_c}$$


v = the volume of the hydrocarbon, $a_0 =$ the hydrophilic head group area $l_c =$ chain length

CPP < 0.33 (symptomatic of relatively hydrophilic molecules) leads to the formation of spherical micelles within aqueous media

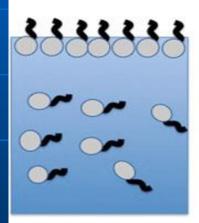
0.5 < CPP < 1 (applicable to relatively hydrophobic molecules) leads to the formation of closed bilayers — ultimately vesicles, such as liposomes and niosomes in aqueous media.

1 < CPP of above 1 (indicative of extremely hydrophobic molecules) results in the formation of reverse micelles in non-aqueous media.

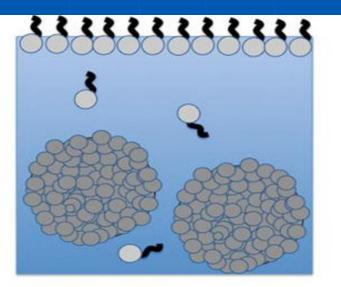
Lipid	Critical packing parameter $\frac{v}{a_r l_r}$	Critical packing shape	Structures formed
Double-chained lipids with small head-group areas: anionic lipids high sait, saturated frozen chains. (e.g. phosphatidyl ethanolamine, phosphatidyl serine + Ca ²⁺)	~1	Ginder	Planar bilayers
Double-chained lipids having small head groups (e.g. non-ionic lipids, poly(cis) unsaturated chains, phosphatidic acid + Ca ²⁺)	> 1	Image: Notesting State Image: Notesting State Image: Notesting State	Inverted micelles

Vesicular drug delivery systems

I. Prolong the existence of the drug in systemic circulation and perhaps, reduces the toxicity if selective uptake can be achieved due to the delivery of drug directly to the site of infection.


 Improves the bioavailability especially in the case of poorly soluble drugs.

Both hydrophilic and lipophilic drugs can be incorporated.


 4. Delays elimination of rapidly metabolizable drugs and thus function as sustained release systems

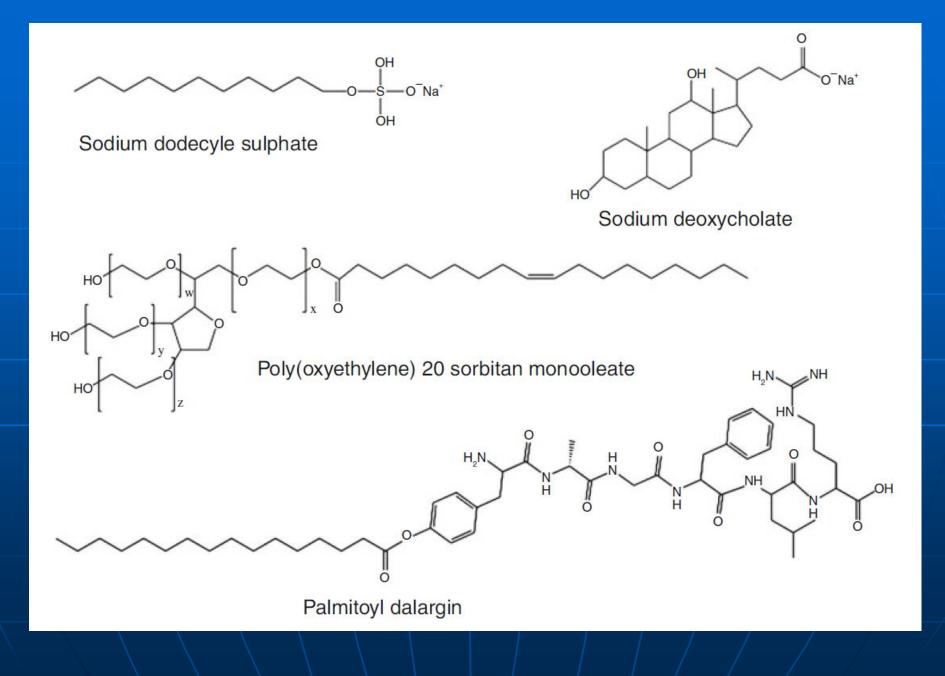
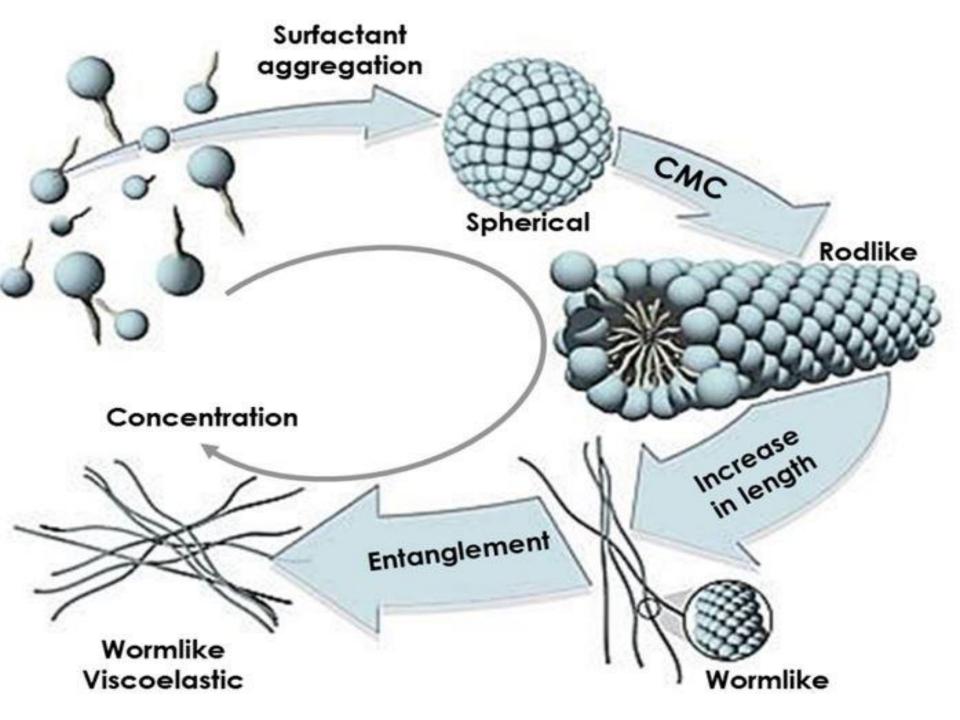
Low Molecular Weight Micelles

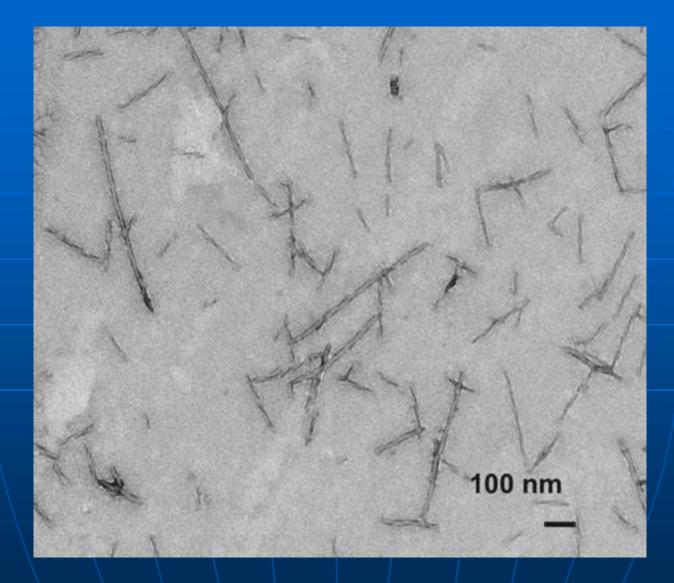
 Low molecular weight amphiphile micelles are formed from the selfassembly of comparatively hydrophilic amphiphiles (molecular weight <1,500 Da).

Below Critical Micellar Concentration

Above Critical Micellar Concentration

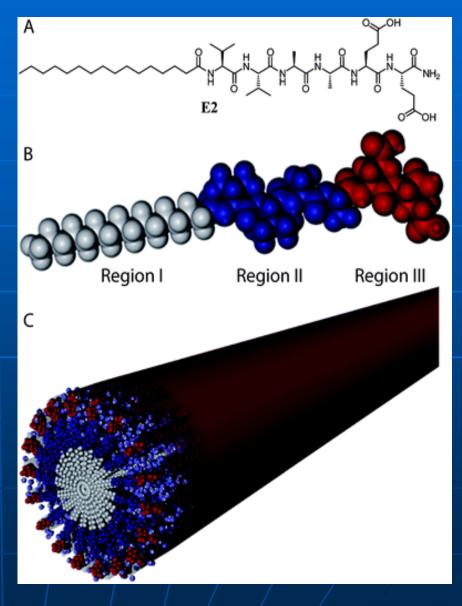
Hydrophilic head group Hydrophobic group

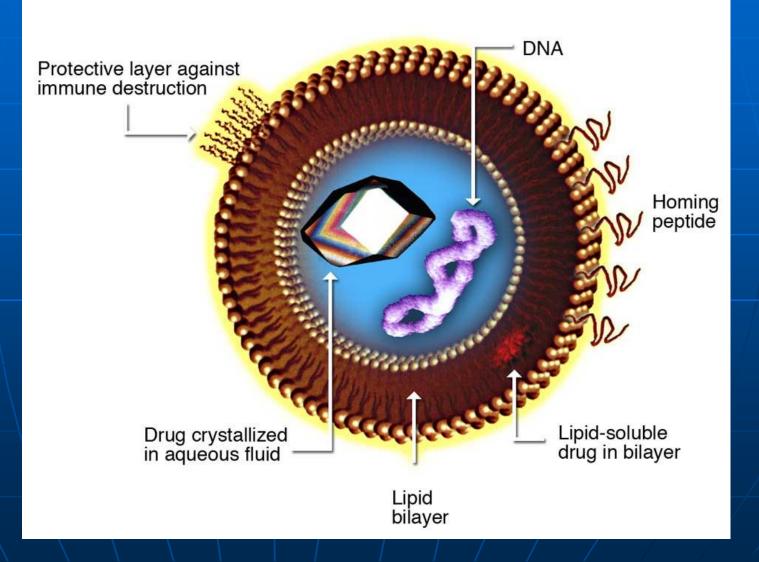

 Table 2.1
 Methods for the determination of the critical micelle concentration

Method	Principle	Reference	Advantages	Comments
Surface tension	Measures the change in surface tension caused by progressively more molecules associating at the air—aqueous interface; a limiting value signals the onset of micellisation	Nagadome et al. (1992)	Simple methodology	Large quantities of sample required (>100 mg)
Conductivity	Measures the change in conductivity as ionic surfactants aggregate into micelles	Mehrotra and Jain (1992); Okano et al. (2000)	Simple methodology	Only suitable for ionic amphiphiles
Capillary electrophoresis	Measures the conductivity change when ionic amphiphiles aggregate into micelles	Cifuentes et al. (1997)	Low sample requirements <10 mg	Only suitable for ionic amphiphiles
Cyclic voltammetry	Measures the change in current associated with an electrochemical probe, at varying potential and in the presence of a micelle forming amphiphile	Mandal et al. (1988)	Relatively simple experimentation	Only suitable for ionic amphiphiles
Isothermal calorimetry	Measures the enthalpy of demicellisation as the micelles are diluted	Hildebrand et al. (2004)	Accurate method provides additional information on other thermodynamic param- eters (e.g. the entropy and free energy change of micellisation)	Expensive instrumentation
Nuclear magnetic resonance spectroscopy	Measures the chemical shift changes of a relevant proton as the amphiphile self assembles into micelles	Zhao and Fung (1993)	Small sample requirements — mg	Expensive instrumentation
Colorimetry— methyl orange	Measures the change in the absorption spectrum, the hypsochromic shift, experi- enced by methyl orange as it associates with the hydrophobic micelle core	Karukstis et al. (1998); Buwalda and Engberts (2001); Wang et al. (2004)	Rapid analysis	Tends to overestimate the CMC value (Siew et al. 2012)
Flourescence spectroscopy— pyrene	Measures the change in the emission spectra of pyrene as it associates with the hydrophobic core of the micelle	Kalyanasundaram and Thomas (1977); Chooi et al. (2010)	Rapid analysis	Errors may arise if pyrene associates with the monomers in solution, leading to an underestimation of the

CMC (Chooi et al. 2010)


Drug	Trade name	Indication(s)	Manufacturer	Formulation and administration	Reference
Calcitriol	Calcijex	Hypocalcemia associated with chronic renal dialysis	Abbott	A micellar dispersion containing: calcitriol (1 μg mL ⁻¹), poly(oxyethylene) 20 sorbitan monolaurate (4 mg mL ⁻¹), sodium ascorbate (10 mg mL ⁻¹), sodium chloride (1 mg mL ⁻¹), ethylene diamine tetraacetic acid (1.1 mg mL ⁻¹), sodium phosphate (9.2 mg mL ⁻¹), pH=6.5–8.0 Administered as an intravenous bolus	Strickley (2004)
Doxercalciferol	Hectorol	Secondary hyperparathyroidism associated with chronic renal dialysis	Bone care	A micellar dispersion containing: doxercalciferol (2 μg mL ⁻¹), poly(oxyethylene) 20 sorbitan monooleate (4 mg mL ⁻¹), sodium ascorbate (10 mg mL ⁻¹), sodium chloride (1.5 mg mL ⁻¹), disodium ethylene diamine tetraacetic acid (1.1 mg mL ⁻¹), sodium phosphates (9.2 mg mL ⁻¹) Administered as an intravenous bolus	Strickley (2004)
Amphotericin B	Fungizone	Life-threatening fungal infections, mucocutaneous leishmaniasis	Bristol Myers Squibb	 A lyophilised solid containing: amphotericin B (50 mg), sodium desoxycholate (41 mg), sodium phosphate (20.2 mg) Reconstituted in 10 mL water for injection and further diluted to an amphotericin B concentration of 0.1 mg mL⁻¹ in dextrose (5 % w/v) injection. Administered as a slow infusion 	Dailymed (2012)

Palmitoyl dalargin peptide nanofibres Mazza et al. 2013

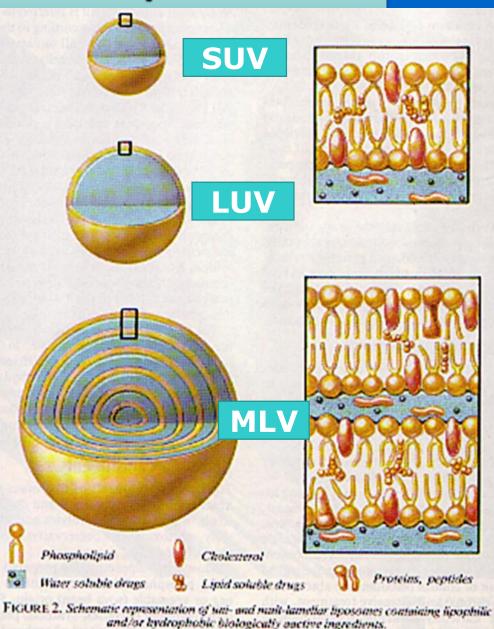

Delivery of hydrophilic peptides <u>EP2590682A1</u>, <u>US20130203647</u>

composition comprises A nanofibres for the delivery of a peptide across the blood brain barrier in a method of therapy of the human or animal body, wherein the nanofibres comprise a peptide conjugated to a lipophilic group. Further, a compound comprises a Dalargin or a derivative having one or more substituted, deleted or inserted aminoacyl units, and, conjugated to an aminoacyl group preferably via a side chain, a lipophilic group, optionally via a linker.

Liposomes

Liposome for Drug Delivery

Classification Based on structural parameters


ТҮРЕ	SPECIFICATIONS
MLV	Multilamellar large vesicles- >0.5 μm
OLV	Oligolamellar vesicles- 0.1-1 µm
UV	Unilamellar vesicles (all in size)
SUV	Small unilamellar vesicles-20-100nm
MUV	Medium sized unilamellar vesicles
LUV	Large unilamellar vesicles->100nm
GUV	Giant unilamellar vesicles->1 μm
MV	Multivesicular vesicles->1 µm

Structure of liposmes

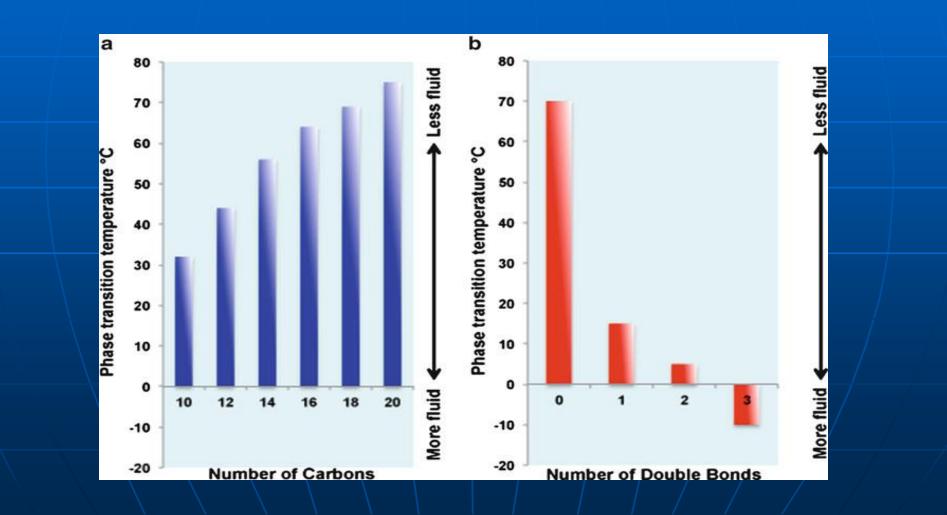
(SUV - small unilamellar vesicle)

(LUV - large unilamellar vesicle)

(MLV – multilamellar large vesicle)

Designing of the drug in the vesicular system has brought a new life to the old pre-existing drugs and thus has improved their therapeutic efficacies by controlling and sustaining the actions.

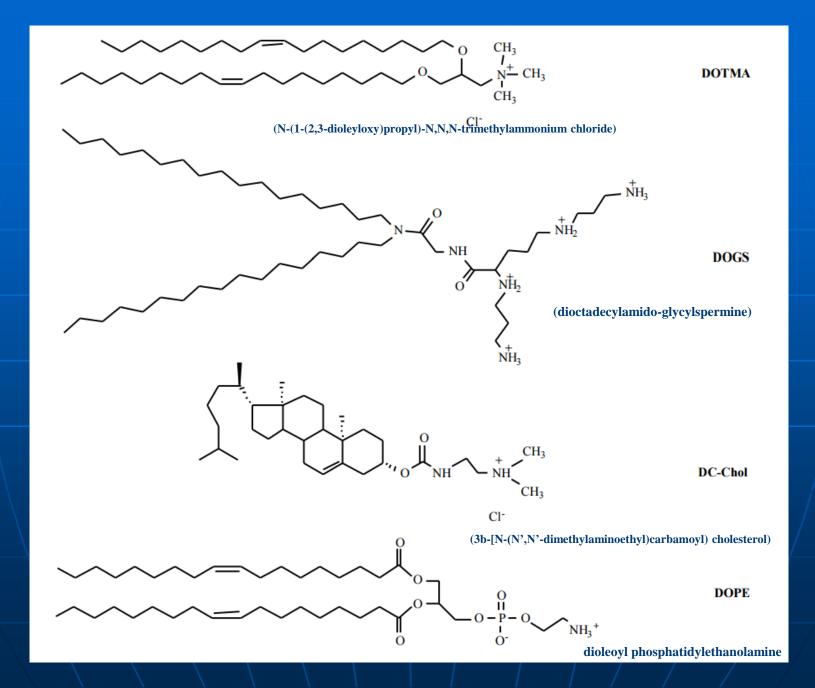
-liposomes,
-niosomes,
-transfersomes, -pharmacosomes,
-ethosomes,
-sphinosomes,
-colloidosomes,
-herosomes
-cubosomes


-aquasomes,
-cryptosmes,
-discomes,
-discomes,
-emulsomes,
-enzymosome,
-genosomes,
-photosomes,
-virosomes,
-vesosomes,
-proteosomes

provesicular drug delivery, coating of vesicles, layerosomes, ufosomes system etc

- Liposomes consist of one or more concentric lipid bilayers, which enclose an internal aqueous volume(s). For drug delivery applications liposomes are usually unilamellar, range in diameter from about 50 – 150nm
- NIOSOMES are formations of vesicles by hydrating mixture of cholesterol and nonionic surfactants.
- Pharmacosomes are defined as colloidal dispersions of drugs covalently bound to lipids and may exist as ultrafine vesicular, micellar or hexagonal aggregates, depending on the chemical structure of drug-lipid complex
- Ethosomes are noninvasive delivery carriers that enable drugs to reach the deep skin layers and/or the systemic circulation.
- Transfersomes are specially optimized, ultradeformable (ultraflexible) lipid supramolecular aggregates, which are able to penetrate the mammalian skin intact.
- Colloidosomes are the hollow shell microcapsules consisting of coagulated or fused particles at interface of emulsion droplets.

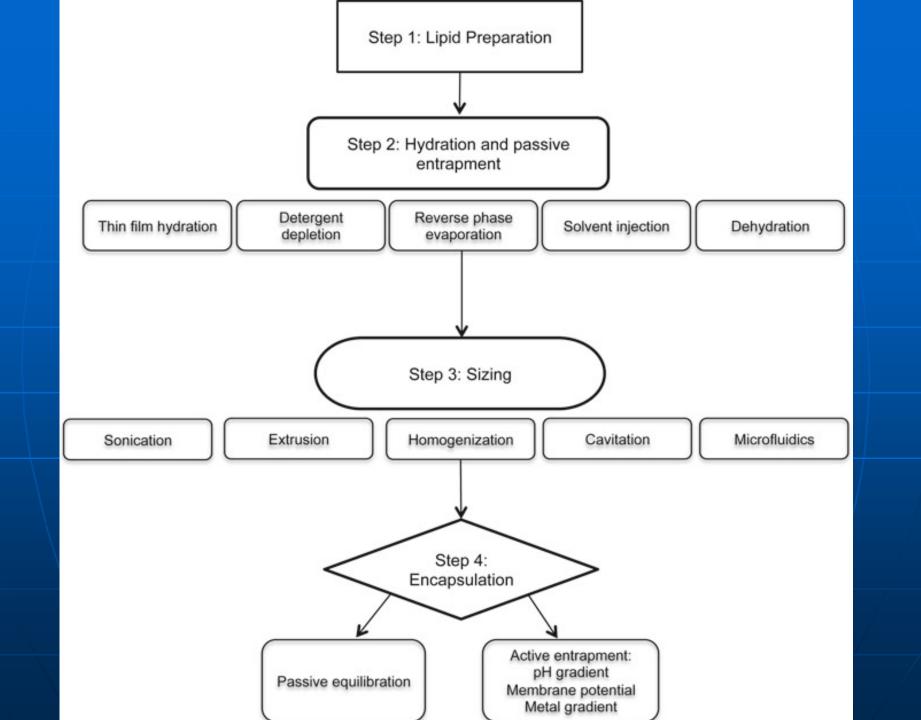
Phase Transition Temperature (T c)


The *T* c is the temperature at which lipids move from a gel phase to a liquid crystalline phase.

Head Group and Surface Charge

Neutral, anionic, and cationic liposomes may be formed depending on the nature of the head group on the chosen lipid

Negative
Phosphatidylglycerol
R-PO ₄ -H ₂ CHOHCH ₂ OH
Phosphatidylserine
R-PO ₄ -CH ₂ CHCOONH ₃
Phosphatidic acid
$R-PO_2-(OH)_2$


Table 3.1 Lipids used in the formation of liposomes and their properties				
Name	Abbreviation	Fatty acid	Transition temperature	Net charge at pH 7.4
Egg phosphatidylcholine	EPC		-15-17	0
Dilauryloylphosphatidylcholine	DLPC	12:0	-1	0
Dimyristoylphosphatidylcholine	DMPC	14:0	23	0
Dipalmitoylphosphatidylcholine	DPPC	16:0	41	0
Distearoylphosphatidylcholine	DSPC	18:0	55	0
I-Myristoyl-2-palmitoylphosphatidylcholine	MPPC	14:0,16:0	27	0
I-Palmitoyl-2-myristoyl phosphatidylcholine	PMPC	16:0, 14:0	35	0
I-Palmitoyl-2-stearoyl phosphatidylcholine	PSPC	16:0,18:0	44	0
I-Stearoyl-2-palmitoyl phosphatidylcholine	SPPC	18:0, 16:0	47	0
Dioleoylphosphatidylcholine	DOPC	18:1	-20	0
1,2-dioleoyl-sn-glycero-3- phosphoethanolamine	DOPE	18:1	-16	0
1,2-dioleoyl-sn-glycero-3-phosphate	DOPA	18:1	-8	-1.3
Dilauryloylphosphatidylglycerol	DLPG		4	-1
Dimyristoylphosphatidylglycerol	DMPG	14:0	23	-1
Dipalmitoylphosphatidylglycerol	DPPG	16:0	41	-1
Distearoylphosphatidylglycerol	DSPG		55	-1
Dioleoylphosphatidylglycerol	DOPG	18:1	-18	-1
Dimyristoyl phosphatidic acid	DMPA	14:0	50	-1.3
Dipalmitoyl phosphatidic acid	DPPA	16:0	67	-1.3
Dimyristoyl phosphatidylethanolamine	DMPE		50	0
Dipalmitoyl phosphatidylethanolamine	DPPE		63	0
Dimyristoyl phosphatidylserine	DMPS	14:0	35	-1
Dipalmitoyl phosphatidylserine	DPPS	16:0	54	-1
	DOPS	18:1	-11	-1
Brain phosphatidylserine	PS		6-8	-
Brain sphingomyelin	BSP		32	0
Dipalmitoyl sphingomyelin	DPSP		41	0
Distearoyl sphingomyelin	DSSP		57	0

d thai 42. e 1:

Adapted from (Szoka and Papahadjopoulos 1980) (http://avantilipids.com)

 The general steps of the manufacturing procedure are;

- (1) Preparation of the lipids for hydration;
- (2) Hydration;
- (3) Sizing to a homogeneous distribution of vesicles;
- (4) Encapsulation (in cases where the agent of interest is encapsulated/associated passively the agent is added while the lipids are being hydrated).

Classification Based on the method of liposome preparation

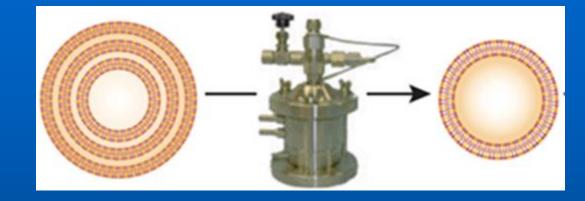
ТҮРЕ	SPECIFICATIONS
REV	Single or oligolamellar vesicles made by reverse-phase evaporation method
MLV-REV	Multilamellar vesicles made by reverse-phase evaporation method
SPLV	Stable plurilamellar vesicles
FATMLV	Frozen and thawed MLV
VET	Vesicles prepared by extrusion technique
DRV	Dehydration-rehydration method

Lipid hydratation by injection

Lipid contaning solution

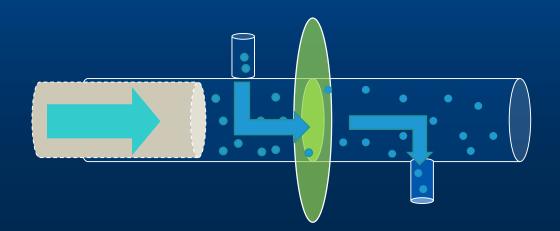
Water

Solvent evaporation



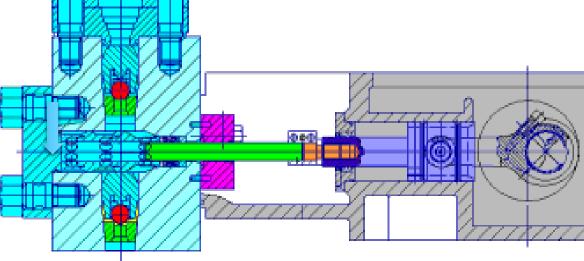
Dissolved lipids and lipophylic API in organic solvent.

Heating to phase transition temperature and evaporation of solvent and hidratation on the same temperature.


Cooling and separation

Extrusion

Micro sieve



High pressure extrusion

$MLV \rightarrow SUV$

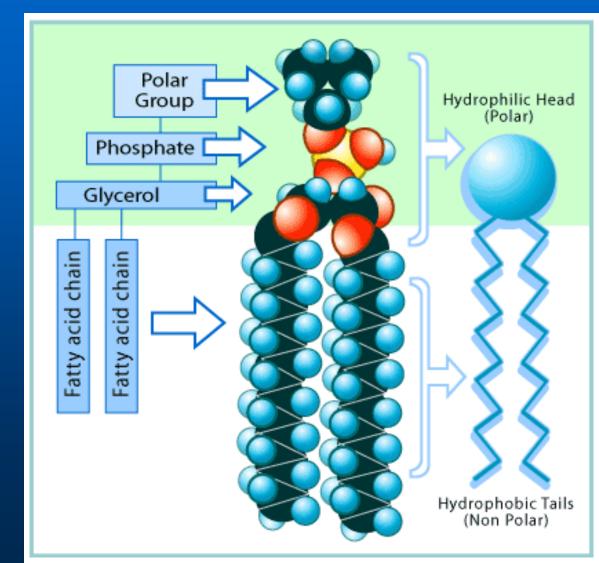
Extrusion chamber

Excentric high pressure pump

Magnetic liposomes Magnetic fiel **Targeted tissue EM Field**

- 1. Magnetic liposomes concentration by magnetic field
- 2. Liberation of API by alternating magnetic fileld

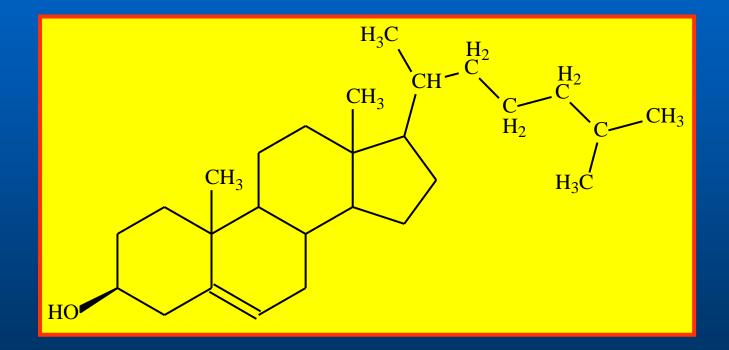
Aseptic manufacturing


Materials

There are number of components of liposomes however **phospholipids** and **cholesterol** being main components.

Phospholipids are the major structural components of biological membranes, where two types of phospholipids exist – phosphodiglycerides and sphingolipids, together with their corresponding hydrolysis products.

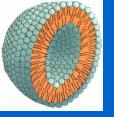
The most common phospholipid is phosphatidylcholine (PC) molecule

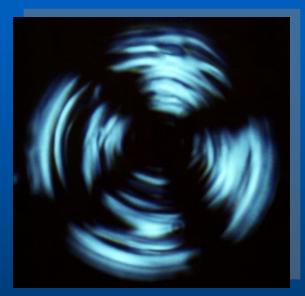

Phospholipids structure

Commonly used synthetic Phospholipids:

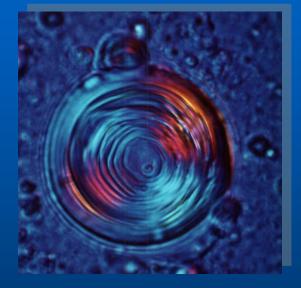
- DOPC = Dioleoyl Phosphatidylcholine
- DOPE = Dioleoyl phosphatidylethanolamine
- DSPC = Distearoyl phosphatidylcholine
- DSPE = Distearoyl phosphatidylethanolamine
- DLPC = Dilauryl phosphatidylcholine
- DMPC = Dimyristoyl phosphatidylcholine
- DLPE = Dilauryl phosphatidylethanolamine

Cholesterole Stabilyzing agent





Physical Characterization

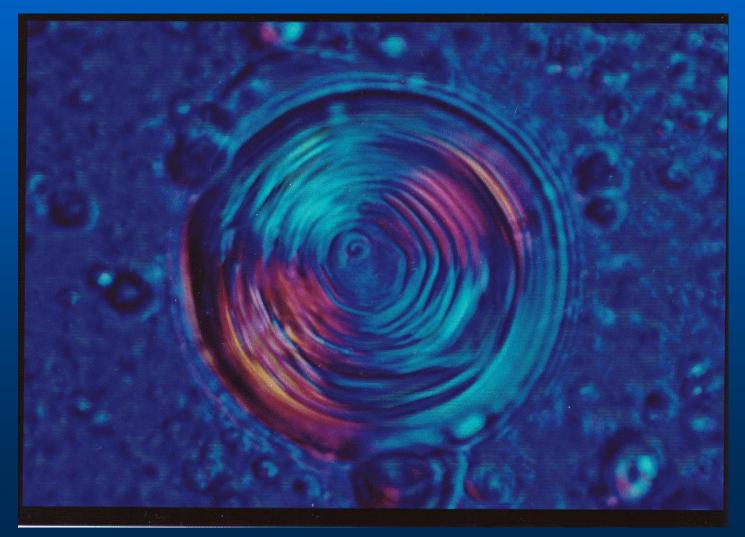

Characterization parameters	Analytical methods
Vesicle shape and surface morphology	Transmission electron microscopy, freeze-fracture electron microscopy.
Surface charge	Free-flow electrophoresis. EDLS
Lamellarity	Small angle X-ray scattering, freeze-fracture electron microscopy, ³¹ P-NMR.
Phase behavior	Freeze-fractureelectronmicroscopy,differentialscanning calorimetry
Percent capture/percent of free drug	Minicolumn centrifugation, gel exclusion, ion-exchange chromatography, radiolabelling

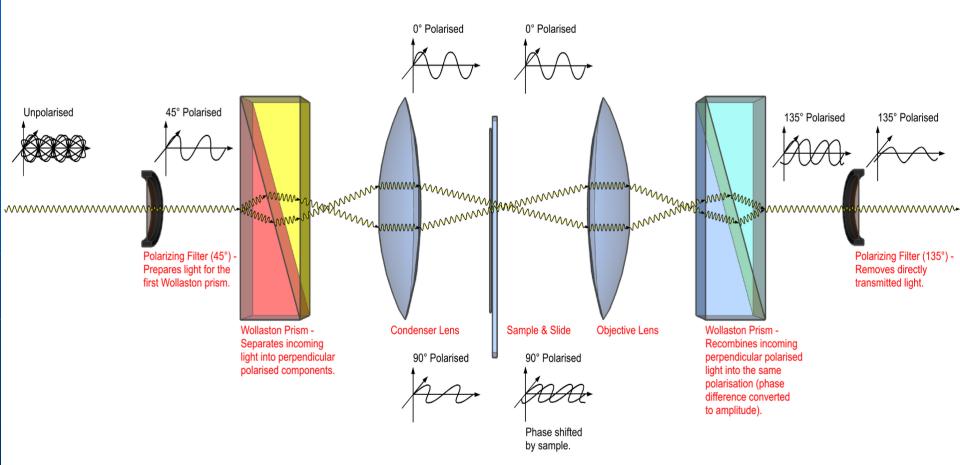
Liposomes examination

Optical microscope polarized light

Optical microscope Nomarski methode

Electron microscope

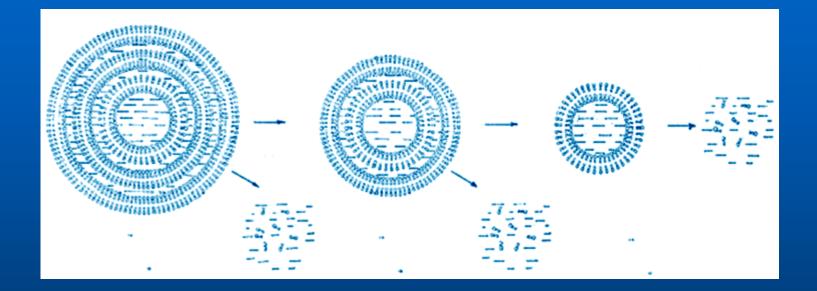

Multilamellar liposomes Polarized ligh


_ 66

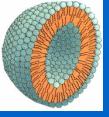
1

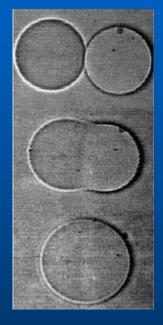
1

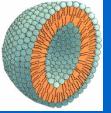
Nomarski or differential interference contrast (DIC) microscopy (invented by Georges Nomarski in the mid-1950s) is used to image, living or stained specimens, which contain little or no optical contrast when viewed using <u>brightfield illumination</u>.


Characterization parameters	Analytical methods
Phospholipid concentration	Lipid phosphorous content using Barlett assay, HPLC
Cholesterol concentration	Cholesterol oxidase assay and HPLC
Drug concentration	Appropriate method given in monograph
Phospholipid peroxidation	UV absorbance, TBA, indometric and GLC
Phospholipid hydrolysis	HPLC and TLC
Cholesterol auto-oxidation	HPLC and TLC
Anti-oxidant degradation	HPLC and TLC
рН	pH meter
osmolarity	Osmometer

Biological Characterization

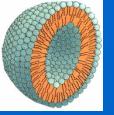

Characterization parameters	Analytical methods
sterility	Aerobic or anaerobic cultures
pyrogenicity	Limulus amebocyte lysate (LAL) test
Animal toxicity	Monitoring survival rates, histology and pathology


Stability of liposomes

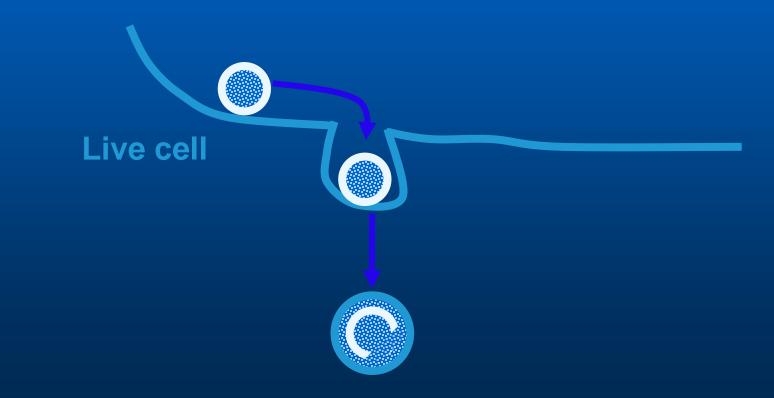


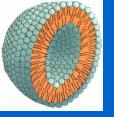
Structure changes during drug release.

Liposomes examination



Adsorption

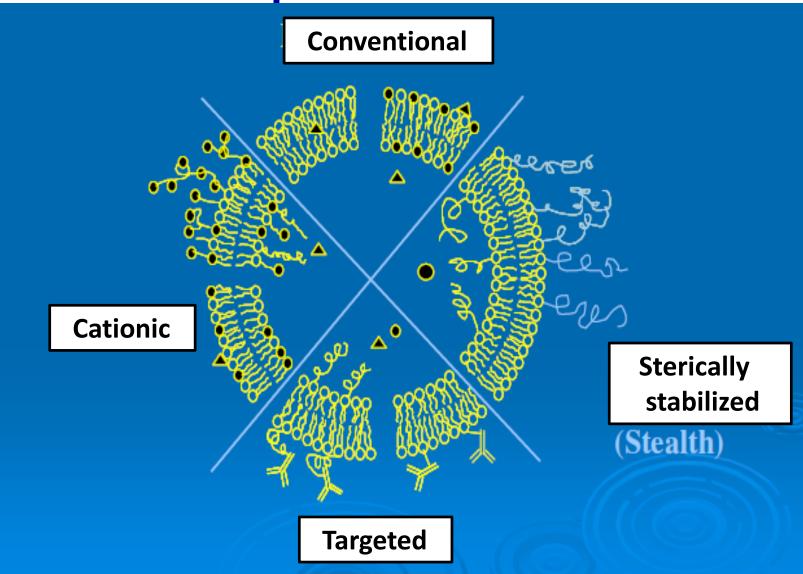

Cell membrane



Liposomes Cell membrane interaction

endocytosis

liposomes get into the lysosomal vesicles and their contents are released there

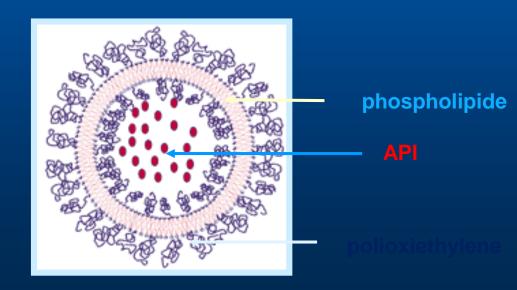

Liposomes Cell membrane interaction

Membrane fussion

the liposome membrane merges with the cell membrane and the drug is directly introduced into the cytoplasm

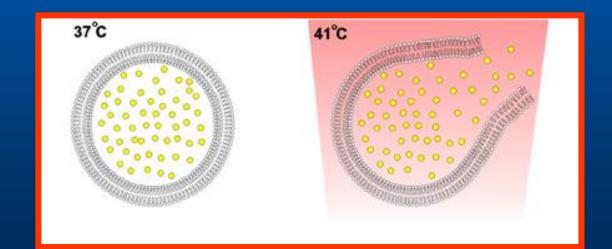
4 basic type of liposomes used in pharmacutics

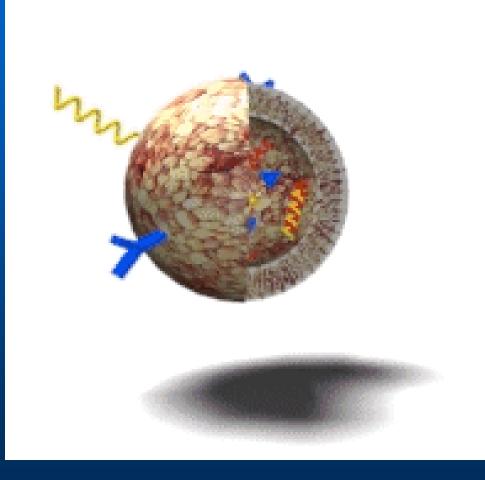
applications


Various liposomal product in dermatology and cosmetics (launched or investigated)

Vesicular system	Marketed by	Liposomes and ingredients
Capture™	Christian Dior	Liposomes in gel with ingredients
Plentitude™	L'Oreal	Tanning agent in liposomes
		прозоппез
Dermosome [⊤] ^M	Microfluidics	Skin care, loaded liposomes
Penta™	Pentapharm	Humectant pentavitin R in
		liposomes
Coatsome NC [™]	Nichiya liposomes Co	Liposomes with humectant

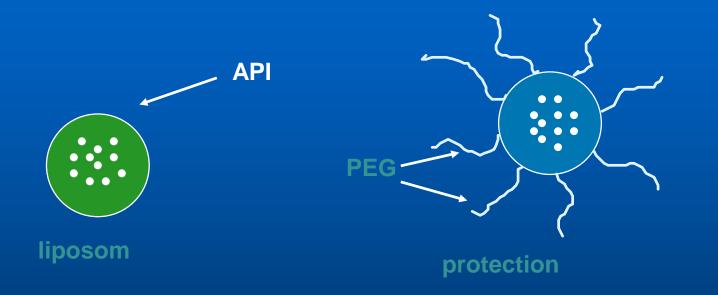
The rapid clearance of liposomes should be prevented


- liposomes primarily the liver and spleen take up quickly
- It can inhibit the rapid elimination empty liposomes simultaneous addition
- Materials incorporating the liposome wall



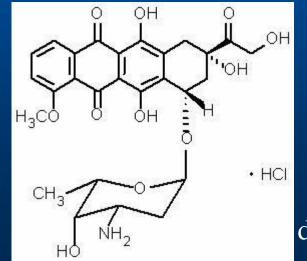
Passive targetting

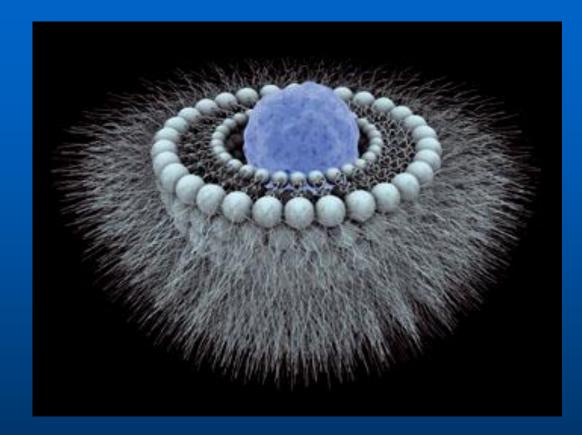
temperature sensitive liposomes



Active targeting

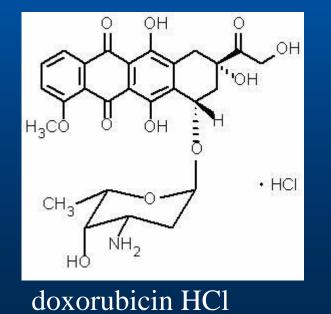
membrane functionalization

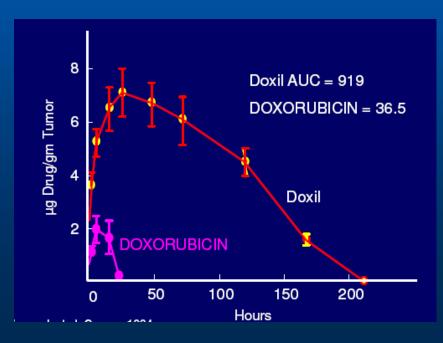

Doxorubicin liposomal AIDS treatment of Kaposi sarcoma



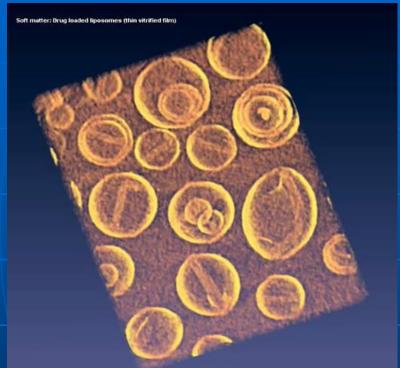
Doxil®, Caelyx pegylated doxorubicin hydrochloride (PLDH). Ovarian cancer, lung cancer, Kaposi's sarcoma related to AIDS infection, myeloma treatment

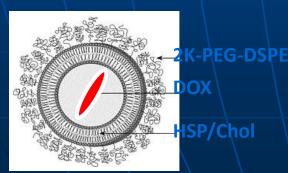
Myocet®, lung cancer in combination with cyclophosphamide

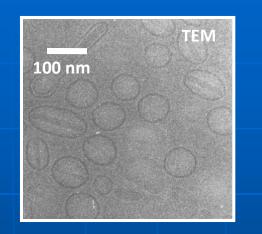



doxorubicin hidrochloride

Pegilated liposomes


Doxorubicin avoiding the cell, chromatin is primarily tied to the stock. Doxorubicin form inhibits DNA and RNA synthesis replicative cycle of "S" phase by intercalation between DNA base pairs and the complex. Unfortunately, in itself a significant cardiotoxic side has. Liposome significantly reduced side effects, provide rapid cell penetration, improved bioavailability.




Doxil ® 2 mg / ml concentrate for infusion (Caelyx in Europe As in circulation), in which the so-called drug doxorubicin. It is in the form Stealth® ("stealth") liposomes.

This proprietary name developed by ALZA Corporation, indicating non-PEGylated liposomes, which implies that the vesicles in the bloodstream may lurk machrphages monocytefront, and approx. Thanks to 55-hour half-life of the active ingredient for tumor capillaries Once in the larger pores is mainly provided through the pathological tissues.

Tecnai G2 Polara Cryo Helium with XPlore30 TEM Sample Courtesy: Dr. P.M. Frederik, University Maastricht, The Hetherlands

First, the accumulation in tumor tissue, thereby not damaging the heart.

nano medicine brought the first on the market with generic versions already on the market

Name	API	Application	Year
Doxil, Caelyx	Doxorubicin	Ovarian cancer, breast cancer, Kaposi's sarcoma	1995
Abelcet	Amphotericin B	Systemic fungal infections	1995
DaunoXo me	Daunorubicin	Solid tumors	1995
Ambisom e	Amphotericin B	Fungal infections	1997
Epaxal- Berna	Hepatitis A antigen	Hepatitis vaccine	1997
DepoCyt	Cytarabin	ไทพอเล	<u>.</u> 1999
Amphote c	Amphotericin B	Systemic fungal infections	2000
Муосес	Doxorubicin	Fungal infections	2000
Visudyne	Verteporfin	Macular degeneration, ocular histoplasmosis	2000

	Encapsulated drug	indication
1	all-trans retionoic acid	T cell lymphoma
2	amikacin	bacterial infections
3	ampicillin	listeria infection
4	annamycin	breast cancer, leukemia
5	antisense oligo	pancreatic cancer
6	camptosar	colon cancer
11	cyclosporin	immunosuppression
12	doxorubicin	breast cancer
13	gangciclovir	cytomegalovirus infection
14	interleukin-2	immunostimulation
15	lipid A	immunostimulation
16	methotrexate	various cancers
17	mitoxantrone	prostate cancer