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Summary of the new scientific results 
 

 

1, We developed WebMRI, a web-based, modular neuroimaging platform. We ported the 

FSL BET and FLIRT (brain extraction and linear registration) image processing algorithms to 

WebAssembly so that they can be run in a browser environment. To the best of our 

knowledge, no other web port of these FSL tools exist. We compared the runtimes of the 

native and ported FSL tools, and found that in everyday use, our versions are not significantly 

slower than the native programs. We added support for DICOM loading in WebMRI, thus 

eliminating the need for an external DICOM to NIfTI conversion step. We developed a 

plugin system, which allows other developers to create new algorithms, or port existing ones, 

and bring them into the WebMRI platform. 

 

2, We developed XReport, a free and open-source, web-based structured reporting platform 

for radiologists, which supports both template creation and reporting in a user-friendly 

manner. We developed an LLM-based solution for automatic structured reporting template 

filling from free text report, using prompt-engineering techniques. 
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Our experiment with GPT4 demonstrates that the language processing capabilities of LLMs 

are highly advanced and could bridge the gap between free-text reporting and structured 

reporting. 
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Discussion 

 
WebMRI 

 

With WebMRI, we have created an extensible, platform-independent, open-source 

neurological image processing platform that supports brain extraction and linear registration, 

and can be run in any modern web browser without external plugins or a web server. For 

brain extraction, we used the BET, and for linear registration, we used the FLIRT FSL 

software package. With the help of Emscripten, we ported the native programs to 

WebAssembly. We developed a new plugin system in BrainBrowse that allows us to run our 

ported tools. We also created a demo application that, using WebMRI, allows for a complete 

neurological image processing workflow, from loading DICOM slices to linear registration. 

With our software system, we demonstrated that not only neurological visualization but also 

image processing is possible in modern browsers. In contrast to Slicer 3D or other 

nonbrowser-based programs, our solution does not require installation. 

One limitation of our software is the decreased performance in browsers due to their limited 

resources compared to native execution. In the future, we plan to port more neurological 

image processing algorithms and aim to simplify the integration of our system into clinical 

PACS environments. 

 

XReport 
 
With XReport, we have developed a free, platform-independent, open-source structured 

reporting software system for radiologists. Our software allows users to easily create new 

report templates and to generate reports. In the design of our program, we emphasized 

modularity, so we organized the core of the system into a separate library, thanks to which 

the reporting and template creation functions can easily be integrated into any other web 

application. In addition, we created a simple DSL called FormScript for the dynamic 

operation of templates. Our responsive templates can easily be integrated into any HIS 

system. Compared to the free service developed by RSNA, our solution is simpler and more 

user-friendly, mainly due to dynamic scripting capability and the responsive user interface. 

Our solution is open-source, so it can be easily developed further by anyone, unlike 

RadReport, which is proprietary. The number of templates available in XReport is negligible 

compared to the RadReport library, but this could change as our platform gains traction.  
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Code snippets associated with the templates in FormScript can be edited in a text box, which 

can be accessed by clicking on the gear icon in the upper right corner of the report. 

 

 

LLM-based structured reporting 

 

Based on the prompt presented in the methods section, GPT-4 generated the following 

structured report: 
{ 

"morphology": ["polypoid", "ulcerating", "circumferential", "semicircumferential"], 

"selectedMorphology": "polypoid", 

"appearance": ["mucinous", "non-mucinous"],  

"selectedAppearance": "mucinous", 

"lengthOfTumor": { "value": 50, "unit": "mm" }, 

"sphincterInvolvement": ["none", "internal sphincter is involced", "intersphincteric space is involved", 

"external sphincter is involved"],  

"selectedSphincterInvolvement": "external sphincter is involved", 

"distanceTumorMesorectalFascia": { "value": 3, "unit": "mm" }, 

"lymphNodeInvolvement": true, 

"numEnlargedLymphNodes": 5, 

"numLymphNodesLessThan5mm": 2, 

"numLymphNodesGreaterThan9mm": 3, 

"tumorDepositInsideMesorectalFascia": true, 

"numTumorDeposites": 2 

} 

 
It can be observed that the information extraction occurred based on the JSON structure 

provided in the prompt. The correct values were selected from the appropriate lists into the 

“selectedMorphology” and “selectedSphincterInvolvement” fields. The extraction of the unit 

of measurement was also successful for the “distanceTumorMesorectalFascia” and the 

“lengthOfTumor” fields. The LLM correctly executed the extraction of data related to the 

number and size of lymph nodes and other lesions, which is clearly visible in the examples of 

“numEnlargedLymphNodes”, “numLymphNodesLessThan5mm”, 

“numLymphNodesGreaterThan9mm”, and “numTumorDeposites”. 
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XReport 

 

We have developed the XReport application, the source code of which we have released on 

Github under the Massachusetts Institute of Technology (MIT) license. The template creator 

and reporting module of the program can be seen in Figure 5. At the top is the name of the 

template, and below that is the content of the template itself. To the right of the template, 4 

buttons appear: the top button with a document icon brings up the view in which the software 

displays the generated report. The second icon from the top copies the content of the report to 

the clipboard, making it easy to paste it into the text boxes of other software. The white plus 

sign on a green background starts a new report, and by clicking on the bottom icon, the 

template can be shared (it is the link related to the template, not the generated report, that is 

copied to the clipboard). 

 

 
Figure 5. – A rectal tumor primer staging report template displayed on the XReport reporting 

interface. 

 

In template creation mode, some elements of the reporting view change. Instead of the 4 

buttons on the right-hand side, only 2 will be visible: save template and discard template. In 

addition, at the bottom center of the template, the program displays a plus button, by clicking 

on which another row can be added to the template. By hovering the cursor over the rows, 

there is an option to duplicate or delete the row, and by selecting the individual fields, the 

editing options for that item will appear. 
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Figure 3. – Comparison of the runtime of the native BET and the bet2.js programs. The vertical axis 

shows the runtime expressed in seconds. The 6 column groups represent the processing times for the 6 

test volumes: the blue column represents the native, the orange represents the time measured in 

Firefox, and the gray represents the runtime in Google Chrome. 

 

 
Figure 4.  – Comparison of the runtime of the native FLIRT and the flirt.js programs. The vertical 

axis displays the runtime expressed in seconds. The 5 column groups represent the processing times 

for the 5 volume pairs: the blue column represents the native, the orange represents the time 

measured in Firefox, and the gray represents the runtime in Google Chrome. 
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Comparison of the runtimes of the ported plugins and the native versions 

 

We compared the performance of the WebAssembly-ported bet2.js and flirt.js to the native 

FSL algorithms in terms of runtime. Both programs were compiled at the highest -O3 

optimization level. The native programs were run on the Windows 10 Linux subsystem, 

while the ported versions were executed in Google Chrome and Mozilla Firefox browsers. 

The specifications of the computer used for testing were: 

 

- CPU: Intel® Core™ i5-3230 @ 2.60Ghz 

- RAM: 6.00 GB 

- System Type: 64-bit operating system, x64-based processor 

 

We ran bet2.js and BET on 6 MR volumes in such a way that each was processed 5 times by 

both the native and ported software, thus eliminating the variance due to a cold start. The 

average runtime for the native BET was 2.96 seconds. The bet2.js took an average of 5.75 

seconds in Google Chrome and 4.62 seconds in Mozilla Firefox to complete the processing 

(Figure 3). 

 

For the comparison between flirt.js and the native FLIRT, we used 10 MR volumes, which 

formed 5 pairs. For each volume pair, one element was a T1-weighted reference, and the 

other was an SWI volume, which the algorithm registered to the reference. The T1-SWI pairs 

always came from the same subject. The processed files were in NIfTI format, and as a 

preprocessing step, we applied brain extraction to them. To eliminate the cold start variance, 

we proceeded in the manner described earlier.  

The native FLIRT took an average of 22.12 seconds to complete the registration. The 

WebAssembly version, when run in Firefox, took an average of 40.79 seconds, while in 

Chrome, it took 47.64 seconds (Figure 4). 
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Results 
 

WebMRI 

 

The start screen of our WebMRI demo application (Figure 2) displays the loaded volume on 

the right in sagittal, coronal, and axial sections, while on the left the list view of the loaded 

volumes and those generated by the plugins can be seen. Below the list view, GUI elements 

appear with sliders and inputs that allow for windowing of the image and other modifications. 

In the menu bar above, three menu items are visible: "File", "Tools", and "About". Through 

the "File" menu, users can browse and upload the files they want to process. In the "Tools" 

menu, plugins loaded into the program can be accessed. By clicking on the "About" menu 

item, users can visit a webpage providing information about the usage of the software and 

potential further development opportunities. 

 

 
Figure 2. – The image displays the user interface of WebMRI. At the top, the menu bar is shown. 

Below the menu bar on the left is a window labeled "Workspace", which displays the files loaded and 

those generated by the plugins. Below that, under "Volume controls", elements that allow for 

manipulation and navigation of the loaded image are visible. On the right, the loaded volume is 

shown in sagittal, coronal, and axial sections. 
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LLM-based structured reporting 

 

During our experiment with GPT-4 LLM, we performed the automatic structuring of a free-

text report segment by providing the following prompt: 

 

We will provide a free text radiological report, and a structured radiological report template. 

Convert the free text format to the template format. 

 

Free text: 

A polypoid, mucinous mass is visible 3mm from the mesorectal fascia. The mass infiltrates 

the external sphincter. The length of the mass is 50mm. There are 5 enlarged lymph nodes, 2 

of them less then 5 mm in size, and 3 of them larger than 9mm. There are 2 tumor deposits 

inside the mesorectal fascia. 

 

Template: 

{ 

„morphology”: [„polypoid”, „ulcerating”, „circumferential”, „semicircumferential”], 

„selectedMorphology”: „”, 

„appearance”: [„mucinous”, „non-mucinous”], „selectedAppearance”: „”, 

„lengthOfTumor”: { „value”: „”, „unit”: „mm” }, 

„sphincterInvolvement”: [„none”, „internal sphincter is involced”, „intersphincteric space 

is involved”, „external sphincter is involved”], „selectedSphincterInvolvement”: „”, 

„distanceTumorMesorectalFascia”: { „value”: „”, „unit”: „mm” } 

„lymphNodeInvolvemnet”: False, 

„numEnlargedLymphNodes”: 0, 

„numLymphNodesLessThan5mm”: 0, 

„numLymphNodesGreaterThan9mm”: 0, 

„tumorDepositInsideMesorectalFascia”: False, 

„numTumorDeposites: 0 

} 
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XReport 

 

During the development of the XReport web application, we used two programming 

languages: JavaScript and TypeScript. The project can be divided into two parts: the library 

and the application. The library is a standalone, reusable JavaScript software package (which 

can be integrated into other programs) that encompasses the main functionalities required for 

template creation and reporting. The application is a Single Page Application (SPA) that, 

utilizing the library, displays the templates, the template builder, and the reporting interfaces. 

 

The library 

 

The entry point of the XReport library is the "makeWidget" function call, which, without 

specifying a Uniform Resource Locator (URL), allows for the creation of a new template, and 

with a URL, allows for the loading of an existing template. Specific Document Object Model 

(DOM) elements or compositions of DOM elements can be used in the library to create the 

template. 

We created a domain-specific language called FormScript to support the dynamic behavior of 

our templates in such a way that they are protected from Cross Site Scripting (XSS) attacks. 

If we allowed users to arbitrarily insert JavaScript code into the templates, it would pose a 

security risk. FormScript ensures that only the implemented operations can be executed in the 

templates, and nothing else. Based on the commands and conditions described in the 

FormScript code assigned to the template, the disappearance, appearance, filling, and other 

properties of the fields can be automated. 

 

The application 

 

We developed the XReport application using the Angular SPA and the Bootstrap Cascading 

Style Sheets (CSS) frameworks, and it is written in a mix of JavaScript and TypeScript 

languages. For hosting the site, we used the free web hosting service of Google Firebase. 
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Porting FSL BET and FLIRT to WebAssembly 

 

FSL is a modular software package in which BET and FLIRT are defined as separate 

command-line programs. FSL is mainly written in C and C++ to maximize performance. To 

port these components, we had to modify parts of the code as well as the scripts (Makefile) 

that compile the programs. We used a compiler called Emscripten for automating the porting, 

which is based on the Low Level Virtual Machine (LLVM) infrastructure and is capable of 

translating LLVM bitcode to WebAssembly. Emscripten greatly simplified the porting 

process since only minimal modifications were required to the original C/C++ codebase. To 

ensure the ported programs did not block user interface responsiveness, they were run on 

background threads using Web Workers. 

 

DICOM support 

 

While BrainBrowser allows for the loading of various neurological file formats (NIfTI, 

MINC, MGH), it does not support DICOM. To load DICOM slices, they must first be 

converted to a format supported by BrainBrowser using an external program. BrainBrowser 

was extended with a DICOM volume loader, which operates with the help of a C++ based 

software named dcm2niix (https://github.com/rordenlab/dcm2niix) that was also ported to 

WebAssembly using Emscripten. 

 

Plugin system 

 

We extended BrainBrowser with a plugin system, making it easy to integrate our ported 

software (BET, FLIRT, DICOM volume loader). Each plugin is described by a JavaScript 

Object Notation (JSON) file. This file defines the parameters supported by the plugin, their 

type, and name. From this, the WebMRI GUI generating system renders the user interface of 

the plugin and runs the program registered to the plugin. 

 

 

 

 

 

 

https://github.com/rordenlab/dcm2niix
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Materials and methods 

 
WebMRI 

 
The development of WebMRI can be divided into three main parts: 

 

- Porting FSL BET and FLIRT to WebAssembly. 

- Modifying BrainBrowser and extending it with a plugin system to run the ported tools 

within BrainBrowser (Figure 1). 

- Developing a demo web application that utilizes WebMRI, allowing for brain extraction and 

linear registration to be executed within the browser via a simple user interface. 

 
Figure 1. – The figure illustrates the software architecture of BrainBrowser, with components that 

were introduced during the development of WebMRI highlighted in bold ("blend": allows for the 

blending of two volumes, "dicom": assists in loading DICOM volumes, "pluginsys": entry point for 

the plugin system). 

 

 



 9 

Aims 

 
The primary aim of this paper is to examine the applicability of web-based medical software 

systems in the domains of medical image processing and radiological reporting. Our goal is 

to create a fully browser-based neurological image analysis software, WebMRI, built upon 

the open-source BrainBrowser. By combining the volumetric visualization capabilities of 

BrainBrowser with the image processing algorithms of FSL, we aim to establish a platform 

capable of performing brain extraction and linear registration without the need for a dedicated 

web server or plugins. This is made possible by porting the FSL BET and FLIRT tools to 

WebAssembly. The ported software versions are then compared to the native FSL programs. 

We also develop another web-based medical software, XReport, which is an open-source, 

freely usable structured reporting platform. We compare our software to another freely 

available reporting platform, the RSNA RadReport. 

With our web-based medical software solutions, we aim to promote browser-based 

neuroimage processing and structured reporting, as well as advocate for open-source medical 

software. The source code for both of our programs will be made available on Github. 
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The characteristics of large language models, as described above, could also be utilized in 

radiological reporting. 
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available for free. Even trying them out requires submitting a request through a form, and 

only after the request is approved can the applications be tested in a trial mode. 

 

 

Artificial neural networks in radiology 

 

As mentioned in the first section of the introduction, in addition to the web, another major 

technological breakthrough in radiology has come from artificial intelligence, specifically 

artificial neural networks. The rapid hardware and software advancements in GPUs and 

Tensor Processing Units (TPU) now allow for the training and running of neural networks 

with tens of billions of parameters. This means that current AI models can learn incredibly 

complex relationships, be it from two-dimensional, three-dimensional datasets, or even free 

text. 

 

- Convolutional Neural Networks: Convolutional Neural Networks (CNN) are models 

whose primary operation is convolution. Convolution can be interpreted as applying various 

filters to the input data. By using these filters, input data can be simplified: the model can 

identify edges and corners and, once this filtered image is passed to later layers of the model, 

these layers can recognize shapes and objects. CNNs are often used for various segmentation 

tasks (e.g., fully outlining organs in a CT scan) and object recognition tasks (e.g., identifying 

pneumonia in an X-ray) in medical imaging and image processing. 

 

- Large Language Models: Large Language Models (LLM) are neural networks with a large 

number of parameters (sometimes in the hundreds of billions) that can be effectively trained 

for linguistic tasks such as translation, text generation, conversation, information extraction, 

and summarizing longer texts. A characteristic feature is their "few-shot learning" capability, 

meaning they only need to see a few examples of a task type to generalize and learn that 

specific task. Due to their vast number of parameters, training LLMs is highly energy-

intensive and expensive. The highly popular GPT4 LLM, developed by OpenAI, reportedly 

cost close to 100 million dollars to train. Due to these high costs, LLMs are typically trained 

once, and users can fine-tune them for various linguistic tasks using "prompts." Open-source 

LLMs are also available, such as LLaMA developed by Meta, which has 65 billion 

parameters.  
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Radiological reporting 

 

Radiological reporting is essential in the medical imaging process. Through the radiological 

report, the radiologist responds to the questions of the referring clinician, thus playing a vital 

intermediary role in communication between the clinician and the radiologist. The 

information conveyed in the report should be accurate, concise, and clear. Another important 

aspect is the amount of time a radiologist takes to prepare the report, i.e., how quickly the 

clinician gets an answer to their question, and how rapidly the patient receives the appropriate 

diagnosis and, ultimately, the treatment. 

There are two main approaches to radiological reporting: 

 

- Dictation-based reporting: With this method, the radiologist describes the abnormalities 

seen on the image using a microphone. Analyzing software converts the sound waves into 

free text in real-time and inputs it into a text box, which the doctor can then edit and format. 

While this method is efficient and flexible, it may result in significant variability in report 

content and format due to different wordings, phrasings, and reporting styles. 

 

- Template-based structured reporting: With this approach, radiologists have to fill out a 

preselected template, similar to filling out a Google Forms questionnaire. Structured reports 

enhance consistency at the expense of flexibility. 

 

 

Web-based software for structured reporting 

 

There are several software solutions available for structured reporting, of which perhaps the 

most well-known is the RadReport web platform developed by the Radiological Society of 

North America (RSNA). Essentially, it is a vast template database where users can submit 

structured reporting templates, which can be created on the site using the T-Rex Template 

web application. Templates can be filtered based on modality, date, and various other 

parameters. Although the program (both the template browser and the template builder) can 

be used for free, third-party modifications are not possible since the software is not open 

source. 

Several companies have developed structured reporting solutions (Smart Reporting: 

https://www.smart-reporting.com, RadioReport: https://radioreport.com), but these are not 

https://www.smart-reporting.com/
https://radioreport.com/
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programming knowledge, so its clinical use is not typical, but it is extensively used in 

research. 

Another noteworthy open-source neuroimage processing application is Slicer3D. While FSL 

is primarily command-line based, Slicer3D focuses on a graphical user interface (GUI) based 

useage, making it easy to use even without programming experience or deep expertise in 

informatics. Slicer3D also supports the previously mentioned linear registration and brain 

extraction, although not natively, but through third-party extensions. 

 

Web software in neuroimage processing 

 

As mentioned earlier, thanks to technologies like HTML5, WebGL, and WebAssembly, it is 

possible to run computationally intensive algorithms in browsers. 

HTML5 is the latest version of the HyperText Markup Language (HTML), introducing 

innovative technologies detailed below into the world of browsers. 

WebGL is a graphics library that allows browsers to utilize the hardware acceleration of the 

Graphics Processing Unit (GPU) for displaying two or three-dimensional images. This 

significantly reduces the rendering time of an image compared to the software based drawing 

time of the Central Processing Unit (CPU). This efficiency arises because, while the CPU can 

draw only one pixel at a time, the GPU can perform this in parallel, allowing for the 

processing of potentially millions of pixels simultaneously. 

WebAssembly is a binary format containing machine instructions that a virtual machine 

running in a browser can execute. Unlike JavaScript, the "native" programming language of 

the browser, which is dynamically typed, WebAssembly is statically typed. This means the 

type correctness of the program is checked during compilation, paving the way for various 

optimization opportunities that result in faster execution times. 

Neurological data sizes often span gigabytes, and their processing has high computational 

requirements. 

BrainBrowser is a browser-based software that employs the technologies mentioned above 

for the two-dimensional slice-by-slice and three-dimensional surface visualization of 

volumetric neurological data. The software is open-source, and both its modular architecture 

and licensing (GNU Affero General Public License v3.0) allow for modifications and 

extensions. 
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Foundations of medical image processing 

 

Medical image processing encompasses all techniques aimed at improving, analyzing, and 

processing images. The communication between medical imaging devices and the RIS is 

done according to the Digital Imaging and Communications In Medicine (DICOM) standard. 

DICOM defines both a communication protocol and a file format. The images generated by 

different modalities are usually saved in DICOM format (typically with a “.dcm” extension) 

in the database of the device, and they are also forwarded in this format to the next DICOM 

node. Modalities that produce spatially coherent images (like CT, MRI) generate, save, and 

forward images in so-called slices. The advantage of this is that the evaluation of the image 

can begin without loading the entire volume, as the slices are individually addressable and 

downloadable. However, the downside is that analyzing and processing these images 

becomes more complicated. From the perspective of processing volumetric images, a file 

format that describes the entire volume in a single file and treats the image as a three-

dimensional data set is more advantageous. 

 

Neuroimage processing 

 

Neuroimage processing is a subset of medical image processing that focuses on visualizing 

and analyzing the structures and functions of the brain and the central nervous system. MRI is 

especially important in this field as it can produce high-resolution images of the brain without 

exposing patients to ionizing radiation. While DICOM is considered a gold standard file 

format and specification across almost all areas of medical imaging, the Neuroimaging 

Informatics Technology Initiative (NIfTI) format, as a successor to Analyze, was specifically 

developed for neuroscientific use. The goal was to create a format that facilitates the analysis 

and processing of neurological volumetric data, bridging the limitations of DICOM from an 

image analysis perspective. 

Two crucial algorithms in neuroimage processing are brain extraction and linear registration, 

most often performed using programs from the FMRIB Software Library (FSL). FSL is an 

open-source software package, with its tools covering the entire spectrum of neurological 

image analysis. The FMRIB's Linear Image Registration Tool (FLIRT) is used for linear 

registration, and the Brain Extraction Tool (BET) is used for brain extraction. Although the 

software package is available for Windows, Linux, and MacOS platforms, it is predominantly 

used in a Linux environment. Its installation and use are not trivial without at least basic 



 3 

Introduction 
 

The digital advancements of the 21st century have modernized medicine and enabled 

significant technological progress. The two perhaps most significant achievements of the 

century are the web and artificial intelligence (AI), both of which quickly revolutionized 

medicine. Radiology stands out, in particular, as it is a field where any technology that aids in 

the interpretation of medical images (X-ray, CT, MRI, etc.) can quickly become beneficial. 

Hospital Information Systems (HIS) and Radiology Information Systems (RIS) are mostly 

web-based, even if not all of their components are. Initially, browser-based solutions 

appeared in those parts of radiological workflows that did not require high computational 

capacity (mainly administrative tasks). However, with the evolution of the web, especially 

with the emergence of the HyperText Markup Language 5 (HTML5), the Web Graphics 

Library (WebGL), and WebAssembly, running computationally intensive image processing 

and image analysis algorithms in browsers became possible. Since web browsers are 

available on almost every digital platform (desktops, smartphones, tablets), web programs are 

platform-independent. Besides being platform-independent, browser applications do not 

require installation or maintenance, as every dependency and prerequisite for running the 

program is downloaded upon visiting the website. Manual updates for the applications are 

also unnecessary in this manner, as the new version of the program becomes available 

immediately upon opening the page. These characteristics of web applications have greatly 

contributed to their conquest in medical informatics. In addition to the previously mentioned 

radiological use cases, web-based solutions have also been developed for reporting, 

specifically for structured, template-based reporting. 

In the following, we would like to introduce the informatics aspects, specifically the web-

related aspects, of two essential radiological workflows: image processing and reporting. 
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List of abbreviations 

 
AI – Artificial Intelligence 

BET – Brain Extraction Tool 

CSS – Cascading Style Sheets 

CT – Computerized Tomography 

DICOM – Digital Imaging and Communications in Medicine 

DOM – Document Object Model 

FLIRT – FMRIB's Linear Image Registration Tool 

FSL – FMRIB Software Library 

GUI – Graphical User Interface 

HIS – Hospital Information System 

HTML – HyperText Markup Language 

HTML5 – HyperText Markup Language 5 

LLM – Large Language Model 

LLVM – Low Level Virtual Machine 

MGH – Massachusetts General Hospital 

MINC – Medical Imaging NetCDF 

MIT – Massachusetts Institute of Technology 

MRI – Magnetic Resonance Imaging 

NIfTI – Neuroimaging Informatics Technology Initiative 

RIS – Radiology Information System 

SPA – Single Page Application 

TPU – Tensor Processing Unit 

URL – Uniform Resource Locator 

WebGL – Web Graphics Library 

XSS – Cross Site Scripting 
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